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1 Introduction

Emoltemplate is a cross-platform text-based molecule builder for ESPResSo.
It is typically used for building coarse-grained toy molecular models. Emoltem-
plate users have access to (nearly) all of the standard and non-standard
(custom, user-created) force-field and features available in ESPResSo.

A file format has been created to store molecule definitions (the ESPResSo-
template format, “ET”). Typical “.ET” files contain atom coordinates, topol-
ogy data (bonds), ESPResSo force-field data, and other ESPResSo settings
(such as user-defined input files) for a type of molecule (or a molecular sub-
unit). Molecules can be copied, combined, and linked together to define new
molecules. (These can be used to define larger molecules. Unlimited levels
of object composition, nesting, and inheritance are supported.) Once built,
individual molecules and subunits can be customized (atoms and bonds, and
subunits can be moved, deleted and replaced).

Emoltemplate requires the Bourne-shell, and a recent version of python
(2.7 or 3.0 or higher), and can run on OS X, linux, or windows (if a suitable
shell environment has been installed). Memory requirements are discussed
in sec:limitations.

1.1 Converting ET files to ESPResSo TCL commands

The emoltemplate.sh program converts ET-files (which contain molecule
definitions) into a file containing ESPResSo TCL commands:

emoltemplate.sh system.et

or

emoltemplate.sh -xyz coords.xyz system.et

In the first example, the coordinates of the atoms in the system are built from
commands inside the “system.et” file. In the second example coordinates for
the atoms are read from an XYZ-file (PDB-files are also supported). (The
“full” atom style was used in this example, but other ESPResSo atom styles
are supported, including hybrid styles.)
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Either of these commands will construct a ESPResSo TCL file (and
possibly one or more auxiliary input files), which can be directly run in
ESPResSo with minimal editing.

Additional tools

The PACKMOL [1] program is useful for generating coordinates of dense
heterogeneous mixtures of molecules, which can be read by emoltemplate.
(The VMD “solvate” plugin may also be helpful.)

VMD [2] is very useful for visualization. VMD can interactively visual-
ize ESPResSo simulations while they are in progress [3]. VMD also has a
number of plugins for generating molecular geometry.

Online examples

This manual explains how to use emoltemplate.sh to build ESPResSo files
from scratch, but it does not discuss how to run ESPResSo or how to visu-
alize the results.

This manual assumes users have some basic familiarity with ESPResSo.
For users who are not familiar with ESPResSo, several complete, work-

ing examples (with images and readme files) are available online (at http:

//moltemplate.org/espresso) which can be downloaded and modified.
These examples are a good starting point for learning ESPResSo and emoltem-
plate.

License

Emoltemplate.sh is publicly available at http://moltemplate.org/espresso
under the terms of the open-source 3-clause BSD license. http://www.

opensource.org/licenses/BSD-3-Clause

2 Installation

Obtaining Emoltemplate

The source code for emoltemplate is now included with moltemplate. To
install emoltemplate, you must install moltemplate. However the examples
and documentation which come with moltemplate are specific to LAMMPS,
not ESPResSo. ESPResSo-specific documentation and examples are now a
separate download. Links to both the documentation/examples, as well as
the moltemplate source code can be found at: http://www.moltemplate.

org/espresso/download.html If you obtained moltemplate or emoltem-
plate as a .tar.gz file, (as opposed to using git), then you can unpack it
using:

tar -xzvf emoltemplate_2016-12-08.tar.gz

(The date will vary from version to version.) Sometimes this archive includes
the moltemplate source code. In that case, the directory will contain a
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subdirectory named “moltemplate” containing the moltemplate source code
and python packaging files.

If necessary, move the (outermost) “moltemplate” directory to its desired
location. (For the sake of this example, let’s assume it is located in your
home directory. Note: This directory should contain the file “setup.py”)

There are two ways to install moltemplate/emoltemplate:

Installation Method 1 (pip)

If you are familiar with pip, then run this command from within the moltem-
plate directory:

pip install .

Make sure that your default pip install bin directory is in your PATH.
(This is usually something like /.local/bin/ or /anaconda3/bin/. If you
have installed anaconda, your PATH should have been updated for you
automatically.) Later, you can uninstall both moltemplate/emoltemplate
using:

pip uninstall moltemplate

Instructions for updating your PATH are included below.

Installation Method 2

Alternatively, you can edit your PATH variable manually to include the
subdirectory where the emoltemplate.sh script is located (typically “moltem-
plate/moltemplate/scripts/”), as well as the directory containing the most
of the python scripts (“moltemplate/”). Suppose the project directory with
the README file is named “emoltemplate”, and suppose it is located in
your home directory:

If you use the bash shell, typically you would edit your ∼/.bash profile,
∼/.bashrc, or ∼/.profile files and append the following lines:

export PATH="$PATH:$HOME/moltemplate/moltemplate"

export PATH="$PATH:$HOME/moltemplate/moltemplate/scripts"

If instead you use the tcsh shell, typically you would edit your ∼/.login,
∼/.cshrc, or ∼/.tcshrc files and append the following lines:

seetnv PATH "$PATH:$HOME/moltemplate/moltemplate"

setenv PATH "$PATH:$HOME/moltemplate/moltemplate/scripts"

Note: You may need to log out and then log back in again for the changes
to take effect.
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WINDOWS installation suggestions

You can install both emoltemplate and ESPResSo in windows, but you
will first need to install the BASH shell environment on your computer. I
recommend installing virtualbox(https://www.virtualbox.org) in win-
dows together with a (debian-based) linux distribution with a lightweight
desktop such as xubuntu(https://xubuntu.org). Alternatively, if you are
using Windows 10 or later, you can try installing the Windows Subsys-
tem for Linux (WSL) (which is text only, https://docs.microsoft.

com/en-us/windows/wsl) or Hyper-V (https://www.nakivo.com/blog/
run-linux-hyper-v/). Otherwise, if you are using an older version of win-
dows, try installing CYGWIN (https://www.cygwin.com/) instead.

To use ESPResSo and emoltemplate, you will also need to install (and
learn how to use) a text editor. (Word, Wordpad, and Notepad will not
work.) If you are NOT using WSL, then you can use popular graphical
text editors such as Atom, Sublime, Notepad++, VSCode, and the graph-
ical versions of emacs and vim. (Note: Don’t use these editors if you are
using the WSL environment. Under WSL, these editors may cause file
system corruption. Avoid them for now. (https://www.reddit.com/r/
bashonubuntuonwindows/comments/6bu1d1/since_we_shouldnt_edit_files_

stored_in_wsl_with/) If you ARE using WSL then you are restricted to
using non-graphical text editors which you can safely install and run from
within the WSL terminal. These include: nano, ne, emacs (text version),
vim (text version), and jove.
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3 Quick reference (skip on first reading)

Note: New users should skip to section 4

3.1 Emoltemplate commands

command meaning

MolType {

content ...

}

Define a new type of molecule (or namespace) named
MolType. The text enclosed in curly brackets (con-
tent) typically contains multiple write(), write once()
commands to define Atoms, Bonds, Angles, Coeffs,
etc... (If that molecule type exists already, then this
will append additional content to its definition.) new
and delete commands can be used to create or delete
molecular subunits within this molecule. (See the
SPCEflex, Monomer, and Butane molecules, and the
TraPPE namespace defined in sections 4.1, 6.1, 10.6,
& 10.2.1.

mol name = new MolType Create (instantiate) a copy of a molecule of type
MolType and name it mol name. (See section 4.1.)

mol name = new MolType.xform() Create a copy of a molecule and apply coordinate
transformation xform() to its coordinates. (See sec-
tions 4.2 and 3.3.)

molecules = new MolType [N ].xform() Create N copies of a molecule of type MolType and
name them molecules[0], molecules[1], molecules[2]...
Coordinates in each successive copy are cumulatively
transformed according to xform(). (See sections 4.2,
7.1 and 3.3.) Multidimensional arrays are also allowed.
(See section 9.)

molecules = new MolType.xform1()
[N ].xform2()

Apply coordinate transformations (xform1() to
MolType, before making N copies of it while cumu-
latively applying xform2(). (See section 7.1 and 7.3.)

molecules = new
random([M1.xf1(),

M2.xf2(),
M3.xf2(),...],
[p1, p2, p3,...],
seed)

[N ].xform()

Generate an array of N molecules randomly selected
from M1,M2,M3,... with probabilities p1, p2, p3..., us-
ing (optional) initial coordinate transformations xf1(),
xf2(), xf3, ..., and applying transformation xform()
cumulatively thereafter. This also works with multi-
dimensional arrays. (See sections 7.4 and 9.2.)

NewMol = OldMol Create a new molecule type based on an exist-
ing molecule type. Additional atoms (or bonds,
etc...) can be added later to the new molecule using
NewMol {more content...}. (See section 10.)

NewMol = OldMol.xform() Create a new molecule type based on an existing
molecule type, and apply coordinate transformation
xform() to it. (See section 10.)
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NewMol inherits Mol1 Mol2 ... {

additional content ...

}

Create a new molecule type based on multiple exist-
ing molecule types. Atom types, bond types, angle
types (etc) which are defined in Mol1, or Mol2, ... are
available inside the new molecule. Additional content
(including more write() or write once() or new com-
mands) follows within the curly brackets. (See sections
10, 10.6, and 10.6.1)

MolType.xform() Apply the coordinate transform xform() to the coor-
dinates of the atoms in all molecules of type MolType.
(See section 10.

molecule.xform() Apply the coordinate transform xform() to the coordi-
nates in molecule. (Here molecule refers to a specific
instance or copy of a particular molecule type. See
sections 8 and 4.2.)

molecules[range].xform() Apply the coordinate transform xform() to the coordi-
nates of molecules specified by molecule[range]. (This
also works for multidimensional arrays. See sections
7.5 and 8.)

delete molecule Delete the molecule instance. (This command can ap-
pear inside a molecule’s definition to delete a specific
molecular subunit within a molecule. In that case,
it will be carried out in every copy of that molecule
type. delete can also be used to delete specific atoms,
bonds, angles, dihedrals, and improper interactions.)
See section 8.3.

delete molecules[range] Delete a range of molecules specified by
molecule[range]. (This also works for multidi-
mensional arrays. See sections 8.3 and 9.4.)

write once(’file’) {
text ...

}

Write the text enclosed in curly brackets {. . .} to file
file. The text can contain @variables which are re-
placed by integers. (See sections 5.1 and 5.2.)

write(’file’) {
text ...

}

Write the text enclosed in curly brackets {. . .} to
file file. This is done every time a new copy of this
molecule is created using the “new” command. The
text can contain either @variables or $variables which
will be replaced by integers. (See sections 5.1 and 5.2.)

Note: file names beginning with “Data ” or “In ” (such as “Data Atoms” or “In Init”) are
inserted into the relevant section of the ESPResSo TCL script. (See section 5.4.)

include file Insert the contents of file file here. (Quotes optional.)

import file Insert the contents of file file here. This command
prevents circular inclusions and is safer to use.

using namespace X This enables you to refer to any of the molecule types,
defined within a namespace object (X in this exam-
ple), without needing to refer to these objects by their
full path. (This does not work for atom types. See
section 10.5.)
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category $catname(i0, ∆)
or
category @catname(i0, ∆)

Create a new variable category. See section B.2 for
details.

create var { variable } Create a variable specific to this molecule object.
(Typically this is used to create molecule-ID numbers,
for a molecule built from smaller components. See
section 6.1.1.)

replace { oldvariable newvariable } Allow alternate names for the same variable. This
replaces all instances of oldvariable with newvariable.
Both variable names must have a “@” prefix. This is
typically used to reduce the length of long variables,
for example to allow the shorthand “@atom:C2” to
refer to “@atom:C2 bC2 aC dC iC”

#commented text All text following a “#” character is treated as a com-
ment and ignored.

3.2 Common $ and @ variables

variable type meaning

$atom:name A unique ID number assigned to atom name in this molecule.
(Note: The :name suffix can be omitted if the molecule in which
this variable appears only contains a single atom.)

@atom:type A number which indicates an atom’s type (typically used to lookup
pair interactions.)

@bond:type A number which indicates a type of bonded interaction. These
numbers can refer to either 2-body, 3-body, or 4-body bonded
interactions. These @bond:type variables are used to lookup force-
field parameters for each type of bond, bond-angle, and dihedral-
angle interaction.

The numbers assigned to each variable are saved in the output ttree/ttree assignments.txt file

Advanced variable usage

$category :query() Query the current value of the counter in this $category without
incrementing it. (The “$category” is usually $atom.) This is useful
for counting the number of atoms created so far.

@category :query() Query the current value of the counter in this @category without
incrementing it. (The “@category” is usually @bond.) This is
useful for counting the total number of bonded interaction types
declared so far.)

@{category:variable}
or
${category:variable}

Curly-brackets, {}, are used to refer to variables with non-
standard delimeters or whitespace characters. (See section 5.5.)

@{category:type.rjust(n)} or
@{category:type.ljust(n)} or
${category:name.rjust(n)} or
${category:name.ljust(n)}

Print the counter variable in a right-justified or a left-justified text-
field of fixed width n characters. (This is useful for generating text
files which require fixed-width columns.)

See section 5.2 for details.
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3.3 Coordinate transformations

(See sections 4.2) and 7.1) for details.)

suffix meaning

.move(x,y,z) Add numbers (x,y,z) to the coordinates of every atom

.rot(θ, x, y, z) Rotate atom coordinates by angle θ around axis (x,y,z) pass-
ing through the origin. (Dipole directions are also rotated.)

.rot(θ, x, y, z, x0, y0, z0) Rotate atom coordinates by angle θ around axis pointing in
the direction (x,y,z), passing through the point (x0, y0, z0).
(This point will be a fixed point.)

.rotvv(v1x, v1y, v1z, v2x, v2y, v2z) Rotate atom coordinates with an angle which rotates the
vector v1 to v2 (around an axis perpendicular to both v1

and v2). If you supply 3 additional numbers x0, y0, z0, the
axis of rotation will pass through this location.

.scale(ratio) Multiply all atomic coordinates by ratio. (Important: The
scale() command does not update force-field parameters such
as atomic radii or bond-lengths. Dipole magnitudes are af-
fected.)

.scale(xr, yr, zr) Multiply x, y, z coordinates by xr, yr, zr, respectively

.scale(ratio,x0, y0, z0) or

.scale(xr, yr, zr, x0, y0, z0)
You can supply 3 optional additional arguments x0, y0, z0
which specify the point around which you want the scaling
to occur. (This point will be a fixed point. Of omitted, the
origin is used.)

.quat(a, b, c, d)

.quat(a, b, c, d, x0, y0, z0)
Rotate atom coordinates by the rotation corresponding to
quaternion a+ bi + cj + bk (around (x0, y0, z0), if specified).

.matrix(M1,1,M1,2,M1,3,M2,1,
M2,2,M2,3,M3,1,M3,2,M3,3) Apply a general linear coordinate transformation. x′

y′

z′

 =

 M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3


 x
y
z


Note: Multiple transformations can be chained together into a compound operation.

(For example: “.scale(2.0).rotate(45.2, 1, 0, 0).move(25.0, 0, 0)”)
These are evaluated from left-to-right. (See section 7.1.)

push(rot(152.3,0.79,0.43,-0.52))
monomer1 = new Monomer
push(move(0.01,35.3,-10.1))
monomer2 = new Monomer
pop()
pop()

Coordinate transformations introduced using the push()
command are applied to molecules instantiated later (us-
ing the new) command, and remain in effect until they
are removed using the pop() command. (And transforma-
tions appearing in arrays accumulate as well, but do not
need to be removed with pop().) In this example, the first
transformation, “rot()”, is applied to both “monomer1” and
“monomer2”. The last transformation, “move()”, is applied
after “rot()” and only acts on “monomer2”.

10



3.4 emoltemplate.sh command line arguments:

argument meaning

-raw coords.raw Read all of the atomic coordinates from an external RAW
file. (RAW files are simple 3-column ASCII files contain X
Y Z coordinates for every atom. Numbers are separated by
spaces, not commas.)

-pdb coords.pdb Read all of the atomic coordinates from an external PDB
file (Periodic boundary conditions are also read, if present.
See section 4.2.)

-xyz coords.xyz Read all of the atomic coordinates from an external XYZ
file (See section 4.2.)

-a ’variable value’ Assign variable to value. (The variable should begin with
either a @ or a $ character. Quotes and a space separator
are required. See appendix B.1.)

-a bindings file’ The variables in column 1 of bindings file (which is a text
file) will be assigned to the values in column 2 of that file.
(This is useful when there are many variable assignments to
make. See appendix B.1.)

-b ’variable value’
or

-b bindings file

Assign variables to values. Unlike assignments made with
“-a”, assignments made using “-b” are non-exclusive. (They
may overlap with other variables in the same category. See
appendix B.1.)

-import-path LOCATION This allows moltemplate to look for .LT files in other direc-
tories when using “import”. (Multiple directories must be
separated by ’:’ characters.)
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4 Introductory tutorial

Summary

Emoltemplate is a very simple text generator (wrapper) which repetitively
copies short text fragments into one (or more) files and keeps track of various
kinds of counters. Emoltemplate is (intentionally) ignorant about ESPResSo
and molecular dynamics in general. It is the user’s responsibility to under-
stand ESPResSo syntax and write ET files which obey it. For users who
are new to ESPResSo, the easiest way to do this is to modify an existing
example.

4.1 Simulating a box of water using emoltemplate and ESPResSo

Figure 1: Coordinates of a single water molecule in our example. (Atomic
radii not to scale.)

Here we show an example of a espresso-template file for water. (The
settings shown here are borrowed from the simple-point-charge [4] SPC/E
model.) In addition to coordinates, topology and force-field settings, “ET”
files can optionally include any other kind of ESPResSo settings including
RATTLE constraints, k-space settings, etc. (Unicode is supported.)

# file "spce_flex.et"

#

# H1 H2

# \ /

# O

#

# This is stiff but flexible version of the "SPC/E"

# water model that uses short-range electrostatics.

# (Not optimized. Do not use it in a publication.)

SPCEflex {

write("Data Atoms") {

part $atom:o pos 0.00000 0.000000 0.0000 type @atom:O q -0.8476 mass 16.0

part $atom:h1 pos 0.81649 0.577359 0.0000 type @atom:H q 0.4238 mass 1.0

part $atom:h2 pos -0.81649 0.577359 0.0000 type @atom:H q 0.4238 mass 1.0

}

write("Data Bonds") {

part $atom:o bond @bond:b_OH $atom:h1

part $atom:o bond @bond:b_OH $atom:h2

}
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# 2-body non-bonded interactions:

write_once("In Settings") {

inter @atom:O @atom:O lennard-jones 0.1553 3.166 10.0

inter @atom:O @atom:H lennard-jones 0.0 3.166 10.0

inter @atom:H @atom:H lennard-jones 0.0 3.166 10.0

}

# 2-body (bonded) interactions:

#

# Ubond(r) = (k/2)*(r-r0)^2

#

# bond_type bond_Style k r0

write_once("In Settings") {

inter @bond:b_OH harmonic 600.0 1.0

}

# 3-body interactions in this example are of this type:

#

# Uangle(theta) = (k/2)*(theta-theta0)^2

#

# (k in kcal/mol/rad^2, theta0 in radians)

#

# inter angleType stylename k theta0

write_once("In Settings") {

inter @bond:a_HOH angle 600.0 1.91061193216

}

write("Data Angles") {

part $atom:o bond @bond:a_HOH $atom:h1 $atom:h2

}

} # SPCEflex

Comment: Currently, in an “.ET” file, the TCL commands
that describe a molecule must be divided into different sections,
such as “Data Atoms”, “Data Bonds”, and “In Settings” See
section 5.4 for details.

Words which are preceded by “$” or “@” characters are counter variables
and will be replaced by integers. (See section 5.2 for details.) Users can
include SPCE water in their simulations using commands like these:

# -- file "system.et" --

import "spce_flex.et"
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wat = new SPCE [1000]

You can now use “emoltemplate.sh” to create simulation input files for
ESPResSo

emoltemplate.sh -pdb coords.pdb system.et

This command will create espresso input files for the molecular system de-
scribed in “system.et”, using the desired atom style (“full” by default). In
this example, emoltemplate is relying on an external file (“coords.pdb”) to
supply the atomic coordinates of the water molecules, as well as the periodic
boundary conditions. Coordinates in XYZ format are also supported using
“-xyz coords.xyz”.

Details

Note that since XYZ files lack boundary information, you must also include
a “Boundary” section in your “.et” file, as demonstrated in section 4.2. In
both cases, the order of the atom types in a PDB or XYZ file (after sorting)
should match the order they are created by emoltemplate (which is deter-
mined by the order of the “new” commands in the ET file). Unfortunately
this may require careful manual editing of the PDB or XYZ file.

4.2 Coordinate generation

It is not necessary to provide a separate file with atomic coordinates. It
is more common to manually specify the location (and orientation) of the
molecules in your system using the “.move()” and “.rot()” commands in the
ET file itself (discussed in section 6). For example you can replace the line:

wat = new SPCEflex [1000]

from the example above with 1000 lines:

wat1 = new SPCEflex

wat2 = new SPCEflex.move(3.1034, 0.00, 0.00)

wat3 = new SPCEflex.move(6.2068, 0.00, 0.00)

wat4 = new SPCEflex.move(9.3102, 0.00, 0.00)

: :

wat1000 = new SPCEflex.move(31.034, 31.034, 31.034)

Specifying geometry this way is tedious. Alternatively, emoltemplate has
simple commands for arranging multiple copies of a molecule in periodic,
crystalline, toroidal, and helical 1-D, 2-D, and 3-D lattices. For example,
you can generate a simple cubic lattice of 10×10×10 water molecules (with
a 3.45 Angstrom spacing) using a single command (which in this example
we split into multiple lines)

wat = new SPCEflex [10].move(0.0, 0.0, 3.1034)

[10].move(0.0, 3.1034, 0.0)

[10].move(3.1034, 0.0, 0.0)
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(See section 6 for more details and examples.) This will create 1000 molecules
with names like “wat[0][0][0]”, “wat[0][0][1]”,. . ., “wat[9][9][9]”. You can al-
ways access individual atomIDs, and bondIDs (if present), for any molecule
elsewhere in your ET files using this notation: “$atom:wat[2][3][4]/h1” This
allows you to define interactions which link different molecules together (see
section 6).

A list of available coordinate transformations is provided in section 3.3.

Boundary Conditions:

ESPResSo simulations have finite volume and are usually periodic. We must
specify the dimensions of the simulation boundary using the “write once(“Data
Boundary”)” command.

write_once("Data Boundary") {

setmd box 31.034 31.034 31.034

setmd periodic 1 1 1

}

This is usually specified in the outermost ET file (“system.et” in this exam-
ple).

This system is shown in figure 2a). After you have specified the geometry,
then you can run emoltemplate.sh this way:

emoltemplate.sh system.et

a) b)

Figure 2: A box of 1000 water molecules (before and after pressure equili-
bration), generated by emoltemplate and visualized by VMD.

4.3 Running a ESPResSo simulation (after using emoltem-
plate)

Emoltemplate will create the following file: “system.tcl” This file contains
TCL commands for creating atoms, bonds, and other interactions in ESPResSo.
They can be run in ESPResSo directly.

To run a simulation, you will have to edit this file in order to add ad-
ditional commands to tell ESPResSo about the simulation conditions you
want to use (temperature, pressure), how long to run the simulation, how
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to integrate the equations of motion, and how to write the results to a file
(file format, frequency, etc).
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5 Overview

5.1 Basics: The write() and write once() commands

Each ET file typically contains one or more “write” or “write once” com-
mands. These commands have the following syntax

write_once(filename) {text_block}

This creates a new file with the desired file name and fills it with the text
enclosed in curly brackets {}. Text blocks usually span multiple lines and
contain counter variables (beginning with “@” or “$”). which are replaced
with numbers. However the “write()” command will repeatedly append the
same block of text to the file every time the molecule (in which the write
command appears) is generated or copied (using the “new” command, after
incrementing the appropriate counters, as explained in 5.2.2).

5.2 Basics: counter variables

Words following a “@” or a “$” character are counter variables. By default,
all counter variables are substituted with a numeric counter before they are
written to a file. These counters begin at 1 (by default), and are incremented
as the system size and complexity grows (see below).

These words typically contain a colon (:) followed by more text. The
text preceding this colon is the category name. (For example: “$atom:”,
“@atom:”, “@bond:”.) Variables belonging to different categories are counted
independently.

Users can override these assignment rules and create custom categories.
(See appendices B.1 and B.2 for details.)

5.2.1 Static counters begin with “@”

“@” variables generally correspond to types: such as atom types, bond types,
angle types, dihedral types, improper types. These are simple variables and
they assigned to unique integers in the order they are read from your ET
files. Each uniquely named variable in each category is assigned to a different
integer. For example, “@bond:” type variables are numbered from “1” to the
number of bonded-interaction types. Later, ESPResSo will use this integer
to lookup the bond-length and Hooke’s-law elastic constant describing the
force between two atoms, and the angle between three atoms, etc...

5.2.2 Instance counters begin with “$”

On the other hand, “$” variables are created whenever a copy of a molecule is
created (using the “new” command). (These are usually atom-ID numbers.)
If you create 1000 copies of a water molecule using a command like

wat = new SPCEflex[10][10][10]

then emoltemplate creates 3000 “$atom” variables with names like
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$atom:wat[0][0][0]/o

$atom:wat[0][0][0]/h1

$atom:wat[0][0][0]/h2

$atom:wat[0][0][1]/o

$atom:wat[0][0][1]/h1

$atom:wat[0][0][1]/h2

...

$atom:wat[9][9][9]/o

$atom:wat[9][9][9]/h1

$atom:wat[9][9][9]/h2

5.2.3 Variable names: short-names vs. full-names

In the example above, the $ variables have full-names like “$atom:wat[8][3][7]/h1”,
not “$atom:h1”. However inside the definition of the water molecule, you
don’t specify the full name. You can refer to this atom as “$atom:h1”. Like-
wise, the full-name for the @atom variables is actually “@atom:SPCEflex/H”,
not “@atom:H”. However inside the definition of the water molecule, you
typically use the shorthand notation “@atom:H”.

5.2.4 Numeric substitution

Before being written to a file, every variable (either $ or @) with a unique
full-name will be assigned to a unique integer, starting at 1 by default.

The various $atom variables in the water example will be substituted
with integers from 1 to 3000 (assuming no other molecules are present).
But the “@atom:O” and “@atom:H” variables (which are shorthand for
“@atom:SPCEflex/O” and “@atom:SPCEflex/H”) will be assigned to to
“1” and “2” (again, assuming no other molecule types are present).

So, in summary, @ variables increase with the complexity of your system
(IE the number of molecule types or force-field parameters), but $ variables
increase with the size of your system.

5.2.5 Variable scope

This effectively means that all variables are specific to local molecules they
were defined in. In other words, an atom type named “@atom:H” inside
the “SPCEflex” molecule, will be assigned to a different number than an
atom named “@atom:H” in an “Arginine” molecule. This is because the
two variables will have different full names (“@atom:SPCEflex/H”, and
“@atom:Arginine/H”).

Sharing atom types or other variables between molecules

There are several ways to share atom types between two molecules. The
recommended way is to define them in a separate file and refer to them
when needed. This approach is demonstrated in section 6.1.
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(Alternately, you can define them outside the current molecule defini-
tion, and use file-system-path-like syntax (“../”, or “../../” or “/”) to access
atoms (or molecules) outside of the current molecule. For example, two dif-
ferent molecule types can share the same type of hydrogen atom by referring
to it using this syntax: “@atom:../H”. For details, see section 10.4. and
appendix E.)

5.3 Troubleshooting using the output ttree directory

Users can see what numbers were assigned to each variable by inspecting
the contents of the “output ttree” subdirectory created by emoltemplate.
Unfortunately, it is typical for ESPResSo to crash the first time you attempt
to run it on a TCL file created by emoltemplate. This often occurs if you
failed to spell atom types and other variables consistently. The ESPResSo
error message will help you determine what type of mistake you made. (For
example, what type of variable was misspelled or placed in the wrong place?)

To help you, the “output ttree” directory contains a file named “ttree assignments.txt”.
This is a simple 2-column text file containing a list of all of the variables
you have created in one column, and the numbers they were assigned to in
the other column. (There is also a comment on each line beginning with a
“#” character which indicates the file and line number where this variable
is first used.) This directory also contains all of the files that you created.
The versions with a “.template” extension contain text interspersed with full
variable names (before numeric substitution). (A spelling mistake, like us-
ing “$atom:h” when you meant to say “$atom:h1” or “@atom:H” will show
up in these files if you inspect them carefully.) This can help you identify
where the mistake occurred in your ET files.

Once a molecular system is debugged and working, users can ignore or
discard the contents of this directory.

5.4 “Data” and “In”

All files whose names begin with “In ” or “Data ” are special. The emoltem-
plate.sh script copies the contents of these files into the final TCL file in a
different order than the order the commands were issued. Text written to
“In Init” and “In Settings” (which usually contain force-field parameters)
appears in your TCL file before text written to files with names like “Data
Atoms”, “Data Bonds”, “Data Angles”, “Data Dihedrals”, “Data Angles By
Type”, and “Data Dihedrals By Type”, for example. (These files contain co-
ordinate data, bonds, angles, dihedrals, as well as rules for generating angles
and dihedrals, respectively. Emoltemplate recognizes these files, and treats
them differently.) Afterwards these files are moved to the “output ttree/”
directory, in an effort to clean things up and hide them from view. (But
theese files are not discarded. If there is an error in your files, the “out-
put ttree/” directory is a good place to find it.)

More generally, the “write()” and “write once()” commands can be used
to create any other files you may need to run your simulations which refer
to the same @atom and @bond types. (See section 5.5 for an example.)
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5.5 (Advanced) Using emoltemplate to generate auxiliary
files

The following excerpt from an ET file creates a file named “table XCCX.dat”,
containing 3-column (angle, F, V) data for a tabulated dihedral interaction.
It then refers to this file later on.

write_once("table_XCCX.dat") {

# 12

0.0000000000000000 -0.8000000000000000 0.3000000000000000

0.5235987755982988 0.14999999999999997 1.0598076211353318

1.0471975511965976 1.0598076211353316 0.1500000000000000

1.5707963267948966 0.2999999999999997 -0.800000000000000

2.0943951023931953 -0.5401923788646684 -0.15000000000000008

2.6179938779914944 0.1500000000000005 0.5401923788646684

3.141592653589793 0.8000000000000000 -0.3000000000000000

3.665191429188092 -0.1499999999999996 -1.0598076211353318

4.1887902047863905 -1.0598076211353316 -0.15000000000000047

4.71238898038469 -0.3000000000000004 0.8000000000000000

5.235987755982989 0.5401923788646685 0.1500000000000000

5.759586531581287 -0.14999999999999822 -0.5401923788646685

}

write_once("In Settings") {

inter @bond:xccx tabulated dihedral table_XCCX.dat

}

write_once("Data Dihedrals By Type") {

@bond:xccx @atom:* @atom:C @atom:C @atom:* @bond:* @bond:* @bond:*

}

As new force-field styles and/or features are added to ESPResSo, the files
they depend on can be embedded in an ET file in this way.

Referencing TCL variables inside an .ET file:

The $ character is used to denote both TCL variables and emoltemplate
variables. Users can include references to TCL variables in their .ET files,
but they must precede these them with a “\” character so that emoltemplate
does confuse them with its own. (For example, to refer to TCL variable x
in a write() statement, you must use \$x, not $x) ¡¡¡¡¡¡¡ HEAD

=======
¿¿¿¿¿¿¿ 4b707e6d0f50437da86f5740b7386be9af8b960d

Does “@atom:H” conflict with “$atom:H”?

No. It is okay for static(@) and instance($) variables to share the same
names. (Moltemplate considers them distinct variables and they will be
assigned independently.)
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Addional Details

Variable and molecule names can include unicode characters. They can
also include some whitespace characters and other special characters by
using backslashes and curly-brackets, for example: “@{atom: CA }” and
“@atom:\ CA\ ”. Curly-brackets are useful to clarify when a variable name
begins and ends, such as in this example: “@{atom:C}-@{atom:H}”. (This
prevents the “-” character from being appended to the end of the “C” vari-
able name.)

(Unicode is supported.)
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6 Object composition and coordinate generation

Objects can be connected together to form larger molecule objects. These
objects can be used to form still larger objects. As an example, we define a
small 2-atom molecule named “Monomer”, and use it to construct a short
polymer (“Peptide”).

a) b)

c) d)

Figure 3: a)-b) Building a complex system from small pieces: Construction
of a polymer (b) out of smaller (2-atom) subunits (a) using composition and
rigid-body transformations. Bonds connecting different residues together
(blue) must be declared explicitly, but angle and dihedral interactions will
be generated automatically. See section 6.1 for details. c) An irregular
lattice of short polymers. (See section 9.) d) The same system after 100000
time steps using Langevin dynamics.
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6.1 Building a large molecule from smaller pieces

# -- file "monomer.et" --

import "forcefield.et" # contains force-field parameters

Monomer inherits ForceField {

write("Data Atoms") {

part $atom:ca pos 0.000 1.000 0.000 type @atom:CA q 0.0 mass 13.0

part $atom:r pos 0.000 4.400 0.000 type @atom:R q 0.0 mass 50.0

}

write("Data Bonds") {

part $atom:ca bond @bond:b_Sidechain $atom:r

}

}

In this example we will define two kinds of molecule objects: “Monomer”,
and “Peptide” (defined later). It is often convenient to store atom types,
masses, and force-field parameters in a separate file so that they can be
shared between these different molecules. We do that in the “forcefield.lt”
file below:

# -- file "forcefield.et" --

ForceField {

# There are 2 atom types: "CA" and "R"

# 2-body non-bonded interactions:

#

# Uij(r) = 4*eps_ij * ( (sig_ij/r)^12 - (sig_ij/r)^6 )

#

# i j stylename eps sig rcut

#

write_once("In Settings") {

inter @atom:CA @atom:CA lennard-jones 0.10 2.0 9.0

inter @atom:R @atom:R lennard-jones 0.50 3.6 9.0

inter @atom:CA @atom:R lennard-jones 0.2236 2.8 9.0

}

# 2-body (bonded) interactions:

#

# Ubond(r) = (k/2)*(r-r0)^2

#

# bond_type bond_Style k r0

write_once("In Settings") {

inter @bond:b_Sidechain harmonic 30.0 3.4

inter @bond:b_Backbone harmonic 30.0 3.7

}
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# Although the simple "Monomer" object we defined above has only

# two atoms, later on, we will create molecules with many bonds.

# By convention, in this file we keep track of all of the possible

# interactions which could exist between these atoms:

# 3-body interactions in this example are listed by atomType and bondType

# Rules for determining 3-body angle interactions by type

# angle-type atomType1 atomType2 atomType3 bondType1 bondType2

write_once("Data Angles By Type") {

@bond:a_Backbone @atom:CA @atom:CA @atom:CA * *

@bond:a_Sidechain @atom:CA @atom:CA @atom:R * *

}

# Uangle(theta) = (k/2)*(theta-theta0)^2

# (k in kcal/mol/rad^2, theta0 in radians)

#

# The corresponding command is:

#

# angleType angle k theta0

write_once("In Settings") {

inter @bond:a_Sidechain angle 30.0 1.9896753 #114 degrees

inter @bond:a_Backbone angle 30.0 2.3038346 #132 degrees

}

# Rules for determining 4-body dihedral interactions by type

# dihedralType atmType1 atmType2 atmType3 atmType4 bondType1 bnd2 bnd3

write_once("Data Dihedrals By Type") {

@bond:d_CCCC @atom:CA @atom:CA @atom:CA @atom:CA * * *

@bond:d_RCCR @atom:R @atom:CA @atom:CA @atom:R * * *

}

# 4-body interactions in this example are listed by atomType

# The forumula used is:

#

# Udihedral(phi) = K * (1 + cos(n*phi - d))

#

# The d parameter is in radians, K is in kcal/mol/rad^2.

#

# The corresponding command is

# inter dihedralType dihedral K n d

write_once("In Settings") {

inter @bond:d_CCCC dihedral -0.5 1 3.141592653589793

inter @bond:d_RCCR dihedral -1.5 1 3.141592653589793
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}

} # ForceField

6.1.1 Building a simple polymer

We construct a short polymer by making 7 copies of “Monomer”, rotating
and moving each copy:

# -- file "peptide.et" --

import "monomer.et"

Peptide inherits ForceField {

res1 = new Monomer

res2 = new Monomer.rot(180.0, 1,0,0).move(3.2,0,0)

res3 = new Monomer.rot(360.0, 1,0,0).move(6.4,0,0)

res4 = new Monomer.rot(540.0, 1,0,0).move(9.6,0,0)

res5 = new Monomer.rot(720.0, 1,0,0).move(12.8,0,0)

res6 = new Monomer.rot(900.0, 1,0,0).move(16.0,0,0)

res7 = new Monomer.rot(1080.0, 1,0,0).move(19.2,0,0)

# Now, link the residues together this way:

write("Data Bonds") {

part $atom:res1/ca bond @bond:b_Backbone $atom:res2/ca

part $atom:res2/ca bond @bond:b_Backbone $atom:res3/ca

part $atom:res3/ca bond @bond:b_Backbone $atom:res4/ca

part $atom:res4/ca bond @bond:b_Backbone $atom:res5/ca

part $atom:res5/ca bond @bond:b_Backbone $atom:res6/ca

part $atom:res6/ca bond @bond:b_Backbone $atom:res7/ca

}

}

The position and orientation of each copy of “Monomer” is specified af-
ter the “new” statement. Each “new” statement is typically followed by
a chain of move/rotate/scale functions separated by dots, evaluated left-
to-right (optionally followed by square brackets and then more dots). For
example, “res2” is a copy of “Monomer” which is first rotated 180 degrees
around the X axis (denoted by “1,0,0”), and then moved in the (3.2,0,0)
direction. (The last three arguments to the “rot()” command denote the
axis of rotation, which does not have to be normalized.) (A list of available
coordinate transformations is provided in section 3.3.)

(Note: Although we did not do this here, it is sometimes convenient
to represent polymers as 1-dimensional arrays. See sections 7 and 7.4 for
examples.)

To bond atoms in different molecules or molecular subunits together, we
used the write(“Data Bonds”) command to append additional bonds to the
system.
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6.2 Bonded interactions by type

In this example we did not provide a list of all 3-body and 4-body forces be-
tween bonded atoms in the polymer. (for example using the “write once(”Data
Angles”)” command from section 4.1, or the “write once(”Data Dihedrals”)”
command) Instead we provided emoltemplate.sh with instructions to help
it figure out which atoms participate in 3-body and 4-body bonded interac-
tions. Emoltemplate can detect consecutively bonded atoms and determine
the forces between them based on atom type. (Bond type can also be used as
a criteria.) We did this in “forcefield.et” using the “write once(”Data Angles By Type”)”
and “write once(”Data Dihedrals By Type”)” commands. (More general
interactions are possible. See appendix D.2.)

7 Arrays and coordinate transformations

Emoltemplate supports 1-dimensional, and multi-dimensional arrays. These
can be used to create straight (or helical) polymers sheets, tubes, torii. They
are also to fill solid 3-dimensional volumes with molecules or atoms. (See
sections 4.2 and 9.)

Here we show an easier way to create the short polymer shown in section
??. You can make 7 copies of the Monomer molecule this way:

res = new Monomer[7]

This creates 7 new Monomer molecules (named res[0] , res[1] , res[2] , res[3] ,
... res[6]). Unfortunately, by default, the coordinates of each molecule
are identical. To prevent the atom coordinates from overlapping, you have
several choices:

7.1 Transformations following brackets [] in a new statement

After every square-bracket [] in a new command, you can specify a list of
transformations to apply. For example, we could have generated atomic
coordinates for the the short polymer in section ?? using this command:

res = new Monomer [7].rot(180, 1,0,0).move(3.2,0,0)

This will create 7 molecules. The coordinates of the first molecule res[0] are
will be unmodified. However each successive molecule will have its coordi-
nates cumulatively modified by the commands “rot(180, 1,0,0)” followed by
“move(3.2,0,0)”.

optional: initial customizations (preceding [] brackets)

You can also make adjustments to the initial coordinates of the molecule
before it is copied, and before any of the array transformations are applied.
For example:

res = new Monomer.scale(1.5) [7].rot(180, 1,0,0).move(3.2,0,0)
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In this example, the “scale(1.5)” transformation is applied once to enlarge
every Monomer monomer initially. This will happen before any of the ro-
tation and move commands are applied to build the polymer (so the 3.2
Angstrom spacings between each monomer will not be effected).

7.2 Transformations following instantiation

Alternately you apply transformations to a molecule after they have been
created (even if they are part of an array).

res = new Monomer [7]

# Again, the first line creates the molecules named

# "res[0]", "res[1]", "res[2]", "res[3]", ... "res[6]".

# The following lines move them into position.

res[1].rot(180.0, 1,0,0).move(3.2,0,0)

res[2].rot(360.0, 1,0,0).move(6.4,0,0)

res[3].rot(540.0, 1,0,0).move(9.6,0,0)

res[4].rot(720.0, 1,0,0).move(12.8,0,0)

res[5].rot(900.0, 1,0,0).move(16.0,0,0)

res[6].rot(1080.0, 1,0,0).move(19.2,0,0)

7.3 Transformation order (general case)

A typical array of molecules might be instantiated this way:

mols = new Molecule.XFORMS1() [N].XFORMS2()

mols[*].XFORMS3()

The list of transformations denoted by “XFORMS1” in this example are
applied to the molecule first. Then the transformations in “XFORMS2” are
then applied to each copy of the molecule multiple times. (For the molecule
with index “i”, named “Molecule[i]”, XFORMS2 will be applied i times.)
Finally after all the molecules have been created, the list of transformations
in XFORMS3 will be applied. For example, to create a ring of 10 peptides
of radius 30.0, centered at position (0,25,0), use this notation:

peptide_ring = new Peptide.move(0,30,0) [10].rot(36,1,0,0)

# After creating it, we can move the entire ring

# (These commands are applied last.)

peptide_ring[*].move(0,25,0)

7.4 Random arrays

a) b) c)

Figure 4: A random heteropolymer (c), composed of of 2bead and
Monomer3 monomers (a and b) in a 3:2 ratio.
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Arrays of random molecules can be generated using the new random() []
syntax. For example, below we define a random polymer composed of 50
2bead and Monomer3 monomers. (See figure 4.)

RandPoly50 inherits ForceField {

# Make a chain of randomly chosen monomers:

monomers = new random([Monomer, Monomer3], [0.6, 0.4], 123456)

[50].rot(180,1,0,0).move(2.95, 0, 0)

# Now, link the monomers together this way:

write("Data Bonds") {

part $atom:monomers[0]/ca bond @bond:b_Backbone $atom:monomers[1]/ca

part $atom:monomers[1]/ca bond @bond:b_Backbone $atom:monomers[2]/ca

part $atom:monomers[2]/ca bond @bond:b_Backbone $atom:monomers[3]/ca

part $atom:monomers[3]/ca bond @bond:b_Backbone $atom:monomers[4]/ca

...

part $atom:monomers[48]/ca bond @bond:b_Backbone $atom:monomers[49]/ca

}

#(Note: Both the "Monomer" and "Monomer3" molecules contain atoms

# named "$atom:ca". The atom types are different, however.)

} #RandPoly50

It is also possible to fill a 2 or 3-dimensional volume with molecules randomly.
This is discussed in section 9.2.

The new random() function takes 2 or 3 arguments: a list of molecule
types (Monomer and Monomer3 in this example), and a list of probabilities
(0.6 and 0.4 ) both enclosed in square-brackets []. There is no limit to
the number of molecule types which appear in these lists. (These lists can
also contain vacancies/blanks. See section 9.3.) (An optional random-seed
argument can also be included. For example the “123456” shown above. If
you omit this number, then you will get different results each time you run
emoltemplate.) Note that once a molecule containing random monomers
is defined, (“RandPoly50” in this example), each copy of that molecule
(created using the new command) is identical.

optional: initial customizations (within random())

As before, you may apply an initial transformation to each monomer type
immediately after its name. For example to move the two monomer types
closer or further away from the polymer axis, you can use:

monomers = new random([Monomer.move(0,0.01,0),

Monomer3.move(0,-0.01,0)],

...

These move(0,0.01,0) and move(0,-0.01,0) commands will be applied be-
fore the other rotate and move commands are applied which generate the
polymer.
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7.5 [*] and [i-j] notation

You can move the entire array of molecules using “[*]” notation:

res[*].move(0,0,40)

(Note that “res.move(0,0,40)” does not work. You must include the “[*]”.)
You can also use range limits to move only some of the residues:

res[2-4].move(0,0,40)

This will move only the third, fourth, and fifth residues.
Of course, as mentioned earlier, you can also always load atom coor-

dinates from an external PDB or XYZ file. Such files can be generated
by PACKMOL, or a variety of advanced graphical molecular modeling pro-
grams. For complex systems, this may be the best choice.

8 Customizing molecule position and topology

By default, each copy of a molecule created using the new command is
identical. This need not be the case.

As discussed in section 7.2, individual molecules which were recently cre-
ated can be moved, rotated, and scaled. You can also overwrite or delete
individual atoms, bonds, and other interactions within a molecule, or their
subunits. (See sections 8.3.2, 8.1, and 8.2.) You make any of these modifica-
tions to some copies of the molecule without effecting other copies. Further-
more, if those molecules are compound objects (if they contain individual
molecular subunits within them), then you can rearrange the positions of
their subunits as well. And all of this can be done from anywhere else in
the ET file.

For example, suppose we used the “Peptide” molecule we defined above
to create a larger, more complex “Dimer” molecule.

Dimer inherits ForceField {

peptides = new Peptide [2].rot(180,1,0,0).move(0, 12.4, 0)

}

dimer = new Dimer

The Dimer molecule is shown in figure 7a). (Note: The rot() and move()
commands are only applied to the the second peptide, as explained in section
7.1.) We can customize the position of the 3rd residue of the second peptide
this way:

dimer/peptide[1]/res[2].move(0,0.2,0.6)

This does not effect the position of res[2] in peptide[0] (or in any other
“Peptide” molecule). If you want to move them both, you could use a
wildcard character “*”

dimer/peptide[*]/res[2].move(0,0.2,0.6)

(You an also use ranged notation, such as “peptide[0-1]”, as an alternative
to “peptide[*]”. See section 7.5. You could also modify the definition of the
“Peptide” molecule. See section 10.)
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8.1 Customizing individual atom locations

To customize the positions of individual atoms, don’t use the “move” or
“rot” commands. Instead simply overwrite their coordinates this way:

write("Data Atoms") {

part $atom:dimer/peptide[0]/res[2]/ca pos 6.4 8.2 0.6

}

8.2 Adding bonds and angles to individual molecules

Adding additional bonds within a molecule can be accomplished by writing
additional lines of text to the “Data Bonds” section. (This is what we
did when we added bonds between residues to create a polymer in section
6.1.1.) Again, bonds and atom names must be referred to by their full
names. Bonds and bonded interactions can be deleted using the “delete”
command. (See section 8.3.)

8.3 The delete command

8.3.1 Deleting molecules or molecular subunits

Molecules can be further customized by deleting individual atoms, bonds,
bonded-interactions, and entire subunits. We can delete the 3rd residue of
the second peptide, use the “delete” command:

delete dimer/peptide[1]/res[2]

8.3.2 Deleting atoms

Individual atoms or bonds can be deleted in a similar way:

delete dimer/peptide[0]/res[3]/ca #<-deletes $atom:ca in dimer/peptide[0]/res[3]

delete dimer/peptide[1]/res[4]/r #<-deletes $atom:r in dimer/peptide[1]/res[4]

Whenever an atom or a molecule is deleted, the bonds, angles, dihedrals,
and improper interactions involving those atoms are deleted as well. (In
fact, any lines of text in any “write()” statement containing references to
deleted atoms are omitted.)

Multiple molecules or atoms can moved or deleted in a single command.
For example, the following command deletes the third, fourth, fifth residues
from both peptide[0] and peptide[1]:

delete dimer/peptide[*]/res[2-4]

See section 7.5 for an explanation of ranged (“[2-4]”) array notation, and
wildcard characters (“*”).
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9 Multidimensional arrays

The same techniques work with multidimensional arrays. Coordinate trans-
formations can be applied to each layer in a multi-dimensional array. For
example, to create a cubic lattice of 3x3x3 peptides: you would use this
syntax:

peptides = new Peptide [3].move(0, 0, 30.0)

[3].move(0, 30.0, 0)

[3].move(30.0, 0, 0)

(Similar commands can be used with rotations to generate objects with
cylindrical, helical, conical, or toroidal symmetry.)

9.1 Customizing individual rows, columns, or layers

Similarly, you can customize the position of individual peptides, or layers or
columns using the methods above:

peptides[1][*][*].move(20,0,0)

peptides[*][1][*].move(0,0,20)

peptides[*][*][1].move(0,20,0)

(See figure 3c))

9.2 Creating random mixtures using multidimensional ar-
rays

You can use “new random()” to fill space with a random mixture of molecules.
The following 2-dimensional example creates a lipid bilayer (shown in figure
5) composed of an equal mixture of DPPC and DLPC lipids. (...Whose
definition we omit here. See the online examples for details.)

import "lipids" # define DPPC & DLPC

lipids = new random([DPPC,DLPC], [0.5,0.5], 123) # "123"=random_seed

[19].move(7.5, 0, 0) # lattice spacing 7.5

[22].move(3.75, 6.49519, 0) # hexagonal lattice

[2].rot(180, 1, 0, 0) # 2 monolayers

a) b)

Figure 5: A lipid bilayer membrane composed of a random equal mixture
of two different lipid types in a 1:1 ratio. (See section 9.2.) In b) one of the
molecule types was left blank leaving vacancies behind. (See section 9.3.)

31



9.3 Inserting random vacancies

The list of molecule types passed to the random() function may contain
blanks. In the next example, 30% of the lipids are missing:

lipids = new random([DPPC, ,DLPC], [0.35,0.3,0.35], 123) # 2nd element is blank

[19].move(7.5, 0, 0)

[22].move(3.75, 6.49519, 0)

[2].rot(180, 1, 0, 0)

The results are shown in figure 5b). (Note: When this happens, the ar-
ray will contain missing elements. Any attempt to access the atoms inside
these missing molecules will generate an error message, however moving or
deleting array entries using [*] or [i-j] notation should be safe.)

9.4 Cutting rectangular holes using delete

The delete command can be used to cut large holes in 1, 2, and 3-dimensional
objects. For example, consider a simple 3-dimensional array of molecules:

molecules = new OneAtomMolecule [12].move(3.0,0,0)

[12].move(0,3.0,0)

[12].move(0,0,3.0)

delete molecules[*][*][2]

delete molecules[*][*][8]

delete molecules[6-7][0-8][5-6]

The result of these operations is shown in figure 6. (Note: You may move
or delete previously deleted array elements more than once, and/or deleting
overlapping rectangular regions without error.)

Figure 6: Rectangular holes can be carved out of an array of molecules (rep-
resented here by blue spheres) using the “delete” command. Three delete
commands were used to remove the two planar regions and the rectangular
hole in the center.

10 Customizing molecule types

You can create modified versions of existing molecule types, without having
to redefine the entire molecule. For example:
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Dimer0 = Dimer.move(-9.6,-6.2, 0).scale(0.3125)

or equivalently:

Dimer0 = Dimer

Dimer0.move(-9.6,-6.2, 0).scale(0.3125)

This creates a new type of molecule named “Dimer0” whose coordinates
have been centered and rescaled. (Note that the “scale()” command only
effects the atomic coordinates. (You will have to override earlier force field
settings, such as atomic radii and bond-lengths in order for this to work
properly.) If we want to make additional customizations (such as adding
atoms, bonds, or molecular subunits), we could use this syntax:

Dimer0 = Dimer

# Add some new atoms connecting the two peptides in the dimer

Dimer0 inherits ForceField {

write("Data Atoms") {

part $atom:t1 pos 23.0 0.0 0.0 type @atom:CA q 0.0 mass 13.0

part $atom:t2 pos 24.7 4.0 0.0 type @atom:CA q 0.0 mass 13.0

part $atom:t3 pos 24.7 8.4 0.0 type @atom:CA q 0.0 mass 13.0

part $atom:t4 pos 23.0 12.4 0.0 type @atom:CA q 0.0 mass 13.0

}

write("Data Bonds") {

part $atom:peptides[0]/res7/CA bond @bond:b_Backbone $atom:t1

part $atom:t1 bond @bond:b_Backbone $atom:t2

part $atom:t2 bond @bond:b_Backbone $atom:t3

part $atom:t3 bond @bond:b_Backbone $atom:t4

part $atom:t4 bond @bond:b_Backbone $atom:peptides[1]/res7/ca

}

}

# Center and rescale the atoms in all "Dimer0"

Dimer0.move(-9.6,-6.2, 0).scale(0.3125)

The result of these modifications is shown in figure 7b).
Note1: Coordinate transformations applied to entire molecule types are

an experimental feature as of 2012-10-18. This feature has not been rigor-
ously tested.

Note2: These coordinate transformations will be applied after the molecule
is completely constructed, (If you add atoms to the molecule, these will be
added before the coordinate transformations are applied, even if you issue the
command later.) Consequently, to make things clear, I recommend placing
the coordinate transforms applied to an entire molecule type after all of its
internal details (bonds, atoms, subunits) have been declared, as we did here.

Note3: You may also want all of the atoms in “Dimer0” to share the
same molecule-ID counter (“$mol”), so that ESPResSo realizes they belong
to the same molecule. To do that you should delete the “create var {$mol:.}”
line from the definition of the Peptide molecule, and add it to Dimer0.
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a) b)

Figure 7: a) The “Dimer” molecule. This is a contrived example consist-
ing of two “Peptides”. See section 6.1.1 b) A customized version of the
“Dimer” molecule. (The original “Dimer” is shown faded in the background
for comparison.)

(Advanced) Inheritance

The Dimer0 molecule is a type of Dimer molecule. For those who are famil-
iar with programming, relationships like this are analogous to the relation-
ship between parent and child objects in an object-oriented programming
language. More general kinds of inheritance are supported by emoltemplate
and are discussed in section 10.6.

(Advanced) Multiple Inheritance

If we wanted, we could have created a new molecule type (like “Dimer0”)
which includes atom types and features from multiple different types of
molecules. Section 10.6 mentions one way to do this and section 10.6.3
discusses alternate approaches.

Advanced emoltemplate usage

10.1 Nesting

Molecule names such as “Solvent” (or even “Water”) are short and easy
to type, but are vague and are not portable. If you use common, generic
molecule names, you will not be able to combine your molecule templates
with templates written by others (without carefully checking for naming
conflicts). ET files were meant to be used for storing and exchanging libraries
of different molecule types.

Suppose, for example, that you want to run a simulation consisting of
different molecule types, each of which belong to different ET files. Sup-
pose two of the ET files both happen to contain definitions for “Water”.
Emoltemplate does not detect these name clashes automatically and in-
stead attempts to merge the two versions of “Water” together, (most likely
creating a molecule with 6 atoms instead of 3). This is presumably not what
you want.

As the number of molecule types grows, the possibility of naming clashes
increases. As the behavior of the same molecule can be approximated using
many different force fields, one has to be careful to avoid clashing molecule
names.
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To alleviate the problem, you can “nest” your molecules inside the def-
inition of other molecules or objects. This reduces the scope in which your
molecule is defined. See section 10.3 for an example.

10.2 A simple force-field example

Force-field parameters can be shared by groups of related molecules. In the
example below, we create an object named “TraPPE”. Later we use it to
define a new molecule named “Cyclopentane”.

The following example defines a coarse-grained (united-atom) version of
a “cyclopentane” molecule. (Hydrogen atoms have been omitted.) In this
example, only the atom types (and positions) and the bonds connecting
them need to be specified. The interactions between them are determined
automatically by the settings in the force-field file “trappe1998.et”.

import "trappe1998.et"

cyclopentane {

write("Data Atoms") {

part $atom:c1 pos 0 0.00000000 1.0000000 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c2 pos 0 0.95105652 0.3090170 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c3 pos 0 0.58778525 -0.809017 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c4 pos 0 -0.5877853 -0.809017 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c5 pos 0 -0.9510565 0.3090170 type @atom:TraPPE/CH2 q 0.0 mass 14

}

write("Data Bonds") {

part $atom:c1 bond @bond:TraPPE/CC $atom:c2

part $atom:c2 bond @bond:TraPPE/CC $atom:c3

part $atom:c3 bond @bond:TraPPE/CC $atom:c4

part $atom:c4 bond @bond:TraPPE/CC $atom:c5

part $atom:c5 bond @bond:TraPPE/CC $atom:c1

}

}

(The “TraPPE/” is explained below.) We can create copies of this molecule
in the same way we did with SPCEflex:

# A cubic lattice of 125 cyclopentane molecules (12-angstrom spacing)

mols = new Cyclopentane [5].move(0,0,12) [5].move(0,12,0) [5].move(12,0,0)

Unlike the SPCEflex example, we don’t have to specify all of the interac-
tions between these atoms because the atom and bond types (CH2, CC).
match the type-names defined in the “trappe1998.et” file. This file contains
a collection of atom types and force-field parameters for coarse-grained hy-
drocarbon chains. (See [5] for details.) This way, the “CH2” atoms in
cyclopentane will interact with, and behave identically to any “CH2” atom
from any other molecule which uses the TraPPE force field. (The same
is true for other atom types, and interaction-types which are specific to
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“TraPPE”, such as “@atom:TraPPE/CH3”, “@bond:TraPPE/CC”, etc...
Another molecule which uses the TraPPE force field is discussed later in
section 10.3.) The important parts of the “trappe1998.et” file are shown
below:
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10.2.1 Namespace example

# -- file "trappe1998.et" --

TraPPE {

write_once("In Settings") {

inter @bond:CC harmonic 120.0 1.54

inter @bond:CCC harmonic 62.0022 114

inter @bond:CCCC opls 1.411036 -0.271016 3.145034 0.0

inter @atom:CH2 @atom:CH2 lennard-jones 0.091411522 3.95 10.0

inter @atom:CH3 @atom:CH3 lennard-jones 0.194746286 3.75 10.0

# (Interactions between different atom types use mixing rules.)

}

write_once("Data Angles By Type") {

@bonid:CCC @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC

}

write_once("Data Dihedrals By Type") {

@bond:CCCC @atom:C* @atom:C* @atom:C* @atom:C* @bond:CC @bond:CC @bond:CC

}

}

In addition to the atom-type names and masses, this file stores the force-field
parameters (coeffs) for the interactions between them.

WARNING: BROKEN EXAMPLE. This example was con-
verted from another format into ET format. The example above
uses “opls” dihedral style which does not exist in ESPResSo. The
“opls” force-field allows contains a 4-body dihedral interaction potential which
is the sum of two sinusoidal functions. When I learn ESPResSo well enough,
I will replace the command above with something more relevant. (Tabulated
potentials?) I’ll worry about this later. -Andrew 2012-10-18

Bonded interactions by type

Again, the “Data Angles By Type” and “Data Dihedrals By Type” sections
tell emoltemplate.sh that bonded 3-body and 4-body interactions exist be-
tween any 3 or 4 consecutively bonded carbon atoms (of type CH2, CH3,
or CH4) assuming they are bonded using “CC” (saturated) bonds. The
“*” character is a wild-card. “C*” matches “CH2”, “CH3”, and “CH4”.
(Bond-types can be omitted or replaced with wild-cards “@bond:*”.)

Namespaces and nesting:

Names like “CH2” and “CC” are extremely common. To avoid confus-
ing them with similarly named atoms and bonds in other molecules, we
enclose them (“nest” them) within a namespace (“TraPPE”, in this exam-
ple). Unlike “SPCEflex” and “Cyclopentane”, “TraPPE” is not a molecule.
It is just a container of atom types, bond-types and force-field parameters
shared by other molecules. We do this to distinguish them from other atoms
and bonds which have the same name, but mean something else. Else-
where we can refer to these atom/bond types as “@atom:TraPPE/CH2”
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and “@bond:TraPPE/CC”. (You can also avoid repeating the cumbersome
“TraPPE/” prefix for molecules defined within the TraPPE namespace. For
example, see section 10.3.)

10.3 Nested molecules

Earlier in section 10.2.1, we created an object named “TraPPE” and used it
to create a molecule named “Cyclopentane”. Here we use it to demonstrate
nesting. Suppose we define a new molecule “Butane” consisting of 4 coarse-
grained (united-atom) carbon-like beads, whose types are named “CH2” and
“CH3”.

# -- file "trappe_butane.et" --

import "trappe1998.et"

Butane {

write("Data Atoms"){

part $atom:c1 pos 0.41937 0.00 -1.937329 type @atom:TraPPE/CH3 q 0.0 mass 15

part $atom:c2 pos -0.41937 0.0 -0.645776 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c3 pos 0.41937 0.00 0.645776 type @atom:TraPPE/CH2 q 0.0 mass 14

part $atom:c4 pos -0.41937 0.00 1.937329 type @atom:TraPPE/CH3 q 0.0 mass 15

}

write("Data Bonds"){

part $atom:c1 bond @bond:TraPPE/CC $atom:c2

part $atom:c2 bond @bond:TraPPE/CC $atom:c3

part $atom:c3 bond @bond:TraPPE/CC $atom:c4

}

}

Alternately, as mentioned above, it may be simpler to nest our “Bu-
tane” within “TraPPE”, so that so that it does not get confused with other
(perhaps all-atom) representations of butane. In that case, we would use:

# -- file "trappe_butane.et" --

import "trappe1998.et"

TraPPE {

Butane {

write("Data Atoms"){

part $atom:c1 pos 0.41937 0.00 -1.937329 type @atom:../CH3 q 0.0 mass 15

part $atom:c2 pos -0.41937 0.0 -0.645776 type @atom:../CH2 q 0.0 mass 14

part $atom:c3 pos 0.41937 0.00 0.645776 type @atom:../CH2 q 0.0 mass 14

part $atom:c4 pos -0.41937 0.00 1.937329 type @atom:../CH3 q 0.0 mass 15

}

write("Data Bonds"){

part $atom:c1 bond @bond:../CC $atom:c2

part $atom:c2 bond @bond:../CC $atom:c3

part $atom:c3 bond @bond:../CC $atom:c4
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}

}

}

Note: Wrapping Butane within “TraPPE{ }” clause merely appends addi-
tional content to be added to the “TraPPE” object defined in the “trappe1998.et”
file (which was included earlier). It does not overwrite it. Again “../” tells
emoltemplate use the “CH2” atom defined in the context of the TraPPE en-
vironment (IE. one level up). This insures that emoltemplate does not create
a new “CH2” atom type which is local to the Butane molecule. (Again, by
default all atom types and other variables are local. See section 5.2.5.)

To use this butane molecule in a simulation, you would import the file
containing the butane definition, and use a “new” command to create one
or more butane molecules.

import "trappe_butane.et"

new butane = TraPPE/Butane

(You don’t need to import “trappe1998.et” in this example because it was
imported within “trappe butane.et”.) The “TraPPE/” prefix before “Bu-
tane” lets emoltemplate/ttree know that butane was defined locally within
TraPPE.

Note: An alternative procedure using inheritance exists which may be
a cleaner way to handle these kinds of relationships. See sections 10.6 and
10.6.1.

10.4 Path syntax: “../”, “.../”, and “$mol:.”

Generally, multiple slashes (“/”) as well as (“../”) can be used build a path
that indicates the (relative) location of any other molecule in the object
hierarchy. (The “.”, “/” and “..” symbols are used here in the same way
they are used to specify a path in a unix-like file-system. For example, the
“.” in “$mol:.” refers to the current molecule (instance), in the same way
that “./” refers to the current directory. (Note: “$mol” is shorthand for
“$mol:.”)

A slash by itself, “/”, refers to the global environment. This is the
outermost environment in which all molecules are defined/created.

(Advanced) Ellipsis notation “.../”

If you are using multiple levels of nesting, and if you don’t know (or if
you don’t want to specify) where a particular molecule type or atom type
(such as “CH2”) was defined, you can refer to it using “.../CH2” instead of
“../CH2”. The “...” ellipsis syntax searches up the tree of nested molecules
to find the target (the text following the “/” slash).

10.5 using namespace syntax

Because the Butane molecule was defined within the TraPPE environment,
you normally have to indicate this when you refer to it later. For example,
to create a copy of a Butane molecule, you would normally use:
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import "trappe_butane.et"

butane = new TraPPE/Butane

However for convenience, you can use the “using namespace” decla-
ration so that, in the future, you can quickly refer to any of the molecule
types defined within TraPPE directly, without having to specify their path.

import "trappe_butane.et"

using namespace TraPPE

butane = new Butane

This only works for molecule types, not atom types

Unfortunately, you still must always refer to atom types, bonded-interaction
types, and any other primitive types explicitly (by their full path). For
example, the second line in the “Data Atoms” in the example below does
not refer to the CH2 atom type defined in TraPPE. (Instead it creates a
new atom type, which is probably not what you want.)

import "trappe_butane.et"

using namespace TraPPE

butane = new Butane

write("Data Atoms") {

part $atom:c1 pos 0.41937 0.00 1.937329 type @atom:TraPPE/CH3 q 0.0 mass 15

part $atom:c2 pos -0.41937 0.00 -0.645776 type @atom:CH2 q 0.0 mass 14

}

If, for example, you want to leave out the “TraPPE/” prefix when accessing
the atom, bond, and angle types defined in TraPPE, then instead you can
define a new molecule which inherits from TraPPE. (See section 10.6.)

10.6 Inheritance

We could have defined Butane this way:

import "trappe1998.et"

Butane inherits TraPPE {

write("Data Atoms"){

part $atom:c1 pos 0.41937 0.00 -1.937329 type @atom:CH3 q 0.0 mass 15

part $atom:c2 pos -0.41937 0.0 -0.645776 type @atom:CH2 q 0.0 mass 14

part $atom:c3 pos 0.41937 0.00 0.645776 type @atom:CH2 q 0.0 mass 14

part $atom:c4 pos -0.41937 0.00 1.937329 type @atom:CH3 q 0.0 mass 15

}

write("Data Bonds"){

part $atom:c1 bond @bond:CC $atom:c2

part $atom:c2 bond @bond:CC $atom:c3

part $atom:c3 bond @bond:CC $atom:c4
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}

}

A molecule which inherits from another molecule (or namespace) is a partic-
ular type of that molecule (or namespace). Defining Butane this way allows
it to access all of molecule types, atom types, and bond types, etc... defined
within TraPPE as if they were defined locally. (I did not have to refer to
the CH3 atom types as “@atom:TraPPE/CH3”, for example.)

10.6.1 Multiple inheritance:

A molecule can inherit from multiple parents. This is one way you can allow
the Butane molecule to borrow atom, bond, angle, dihedral, and improper
types from multiple different force-field parents:

import "trappe1998.et"

import "dreiding1990.et"

Butane inherits TraPPE Dreiding {

...

}

Details:Emoltemplate attempts to resolve duplicate atom types or molecule
types if they are found in both parents, giving priority to the first parent in the
list of parents following the “inherits” keyword. (“TraPPE” in this example.
Note: This feature has not been rigorously tested as of 2012-10-18.)

10.6.2 Inheritance vs. Nesting

If two molecules are related to each other this way: “A is a particular type of B”,
then consider using inheritance instead of nesting (or object composition).
In this example (with Butane and TraPPE ) either nesting or inheritance
would work.

Again, one very minor advantage to nesting Butane inside TraPPE, is
that it prevents the name Butane from being confused with or conflicting
with any other versions of the Butane molecule defined elsewhere. (Usually
this is not a consideration.)

10.6.3 Inheritance vs. Object Composition

On the other hand, if two molecules are related to each other this way:
“A is comprised of B and C”, then you might consider using object com-
position instead of inheritance. For example:

import "B.et" # <-- defines the molecule type "B"

import "C.et" # <-- defines the molecule type "C"

A {

b = new B

c = new C

}
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11 Known bugs and limitations

Please report any bugs you find by email to
1) Moltemplate requires a large amount of memory (RAM)
For example, setting up a system of 300000 atoms using moltemplate

currently requires 5GB of free memory (as of 2012-12-04). (Memory usage
appears to scale linearly with system size.) Python programs can require
more than 20 times as much memory as similar programs written in C/C++.
(I wish I had known this earlier.) There are several simple tricks available
to reduce memory usage in python. I hope to try these eventually if I have
time.

Meanwhile this problem might be alleviated by using other python in-
terpreters with a lower memory footprint. Also, computers with a moderate
amount of RAM can be rented very cheaply. (For example, see http://

cloud.google.com/products/compute-engine.html.) Alternately, it may
be necessary to split a large system into pieces, run moltemplate on each
piece, and combine the resulting data files into one large data file later. A
strategy for combining data files together is discussed in appendix B.3.

2) Limited support for non-point-like atoms:
As of 2012-12-01, only point-like particles have been tested. Non-point

like particles like dipoles and ellipsoids are probably not rotated correctly.
3) Triclinic boundary conditions have not been tested:
As of 2012-12-04, support for PDB files with triclinic cells is experimen-

tal. Please let me know if it is not working.
4) When placed at the end of a line, TCL interprets the “

” character as a request to merge two lines together. It is usually safe to
use this character inside emoltemplate write() or write once() commands.
However in some rare cases, joining two lines together using the “
” character can confuse emoltemplate.
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Appendices

A Bonded interactions “By Type”

Interactions between atoms in ESPResSo are normally specified by atom
type, unless they are directly bonded together. However, as of 2012-10-18,
all bonded interactions, including 3-body angle, and 4-body dihedral and
improper interactions, are specified by uniqueby atom ID number. (There
are typically a large number of angles in a typical molecule, and the majority
of lines in a typical ESPResSo TCL file are used to keep track of them.)

This has changed in emoltemplate.sh. emoltemplate.sh contains a utility
which can generate angles, dihedrals, and impropers automatically by atom
and bond type. (This utility is described in section D.) emoltemplate.sh
will inspect the network of bonds present in your system, detect all 3-body,
and 4-body interactions, and determine their type. (Higher n-body interac-
tions can also be defined by the user.) Specifying interactions this way can
eliminate significant redundancy since many atoms share the same type.

To make use of this feature, you would create a new section named
“Data Angles By Type”, “Data Dihedrals By Type”, or “Data Impropers By Type”
The syntax is best explained by example:

write("Data Angles By Type") {

@angle:XCXgeneral * *C* *

@angle:CCCgeneral @atom:C @atom:C @atom:C * *

@angle:CCCsaturated @atom:C @atom:C @atom:C @bond:SAT @bond:SAT

}

The first line will generate a 3-body angle interaction (of type “@bond:XCXgeneral”)
between any 3 consecutively bonded atoms as long as the second atom’s
type-name contains the letter “C”. (Atom and bond type-names can con-
tain wildcard characters *)

The second line will generate a 3-body interaction of type “@bond:CCCgeneral”
between any 3 atoms of type “@atom:C”, regardless of the type of bonds
connecting them. (The last two columns, which are both wildcard charac-
ters, *, tell emoltemplate.sh to ignore the two bond types. Since this is the
default behavior these two columns are optional and can be omitted.)

The third line will generate a 3-body interaction of type “@bond:CCCsaturated”
between any 3 atoms of type “@atom:C”, if they are connected by bonds of
type “@bond:SAT”.

Note: The 2nd and 3rd lines in this example will generate new interac-
tions which may override any angle interactions assigned earlier.

Regular expressions

Regular-expressions can also be used to match potential atom and bond
types. (To use regular expressions, surround the atom and bond types on
either side by slashes. For example: @atom:C[1-5]/, should match @atom:C1
through @atom:C6.) Note: This feature has not been tested as of 2012-10-
18.
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In a similar way, one can define “Dihedrals By Type” and “Impropers
By Type”.

B Advanced emoltemplate.sh Usage

emoltemplate.sh has several optional command line arguments. These are
explained in below:

Usage:

emoltemplate.sh [-pdb/-xyz coord_file] \

[-a assignments.txt] file.et

Optional arguments:

-xyz xyz_file An optional xyz_file argument can be supplied as an argument

following "-xyz".

This file should contain the atomic coordinates in xyz format.

(The atoms must be created in the same order in the .ET file.)

-pdb pdb_file An optional pdb_file argument can be supplied as an argument

following "-pdb".

This should be a PDB file (with ATOM or HETATM records) with

the coordinates you wish to appear in the ESPResSo data file.

(The atoms must appear in the same order in the data file.)

If the PDB file contains periodic boundary box information

(IE., a "CRYST1" record), this information is also copied

to the ESPResSo data file.

(Other molecular structure formats may be supported later.)

-a "@atom:x 1"

-a assignments.txt

The user can customize the numbers assigned to atom, bond,

angle, dihedral, and improper types or id numbers by using

-a "VARIABLE_NAME VALUE"

for each variable you want to modify. If there are many

variables you want to modify, you can save them in a file

(one variable per line). For an example of the file format

run emoltemplate.sh once and search for a file named

"ttree_assignments.txt". (This file is often located in

the "output_ttree/" directory.) Once assigned, the remaining

variables in the same category will be automatically assigned

to values which do not overlap with your chosen values.

-b assignments.txt

"-b" is similar to "-a". However, in this case, no attempt

is made to assign exclusive (unique) values to each variable.

-nocheck
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Normally emoltemplate.sh checks for common errors and typos and

halts if it thinks it has found one. This forces the variables

and categories as well as write(file) and write_once(file)

commands to obey standard naming conventions. The "-nocheck"

argument bypasses these checks and eliminates these restrictions.

Note: this argument must appear first in the list, for example:

emoltemplate -nocheck -pdb f.pdb -a "$atom:res1/ca 1" system.et

B.1 Manual variables assignment (“-a” or “-b”)

It is possible to manually customize the values assigned to the atom types (or
to any other ttree-style variables). For example, consider the the “spce flex.et”
file shown earlier. This file defines a single water molecule with two atom
types (hydrogen and oxygen). Typically the “O” atom type is normally as-
signed to the integer “1”, and “H” would be assigned to “2”. This is because
“O” appears before “H” in that file. If you wanted to swap the order, you
could swap the order in which they first appear.

Alternately you can specify the atom assignments directly using one or
more “-a” flags followed by a quoted assignment string:

emoltemplate.sh -a "@atom:SPCEflex/O 2" system.et

This assigns the oxygen atom type to “2”. Note that quotes are necessary
around the ’@atom:SPCEflex/O 2’ string, which is a single argument. (Also
note that it is necessary to include SPCEflex/ before the O, because in that
example, this atom appeared (and was thus defined) inside the SPCEflex
molecule’s environment. Alternately, if it had been defined outside, globally,
then you could refer to it using “@atom:O”)

Variables need not be assigned to numbers. If for some reason, you want
to substitute “a string” everywhere this atom type appears, you would do
it this way:

emoltemplate.sh -a ’@atom:SPCEflex/O "a string"’ system.et

Multiple assignments can be made by using multiple “-a” flags:

emoltemplate.sh -a ’@atom:SPCEflex/O 2’ -a ’@atom:SPCEflex/H 1’ system.et

However if you have a large number of assignments to make, it may be more
convenient to store them in a file. You can create a two-column text file (for
example “new assignments.txt”) and run emoltemplate this way:

emoltemplate.sh -a new_assignments.txt system.et

The contents of the “new assignments.txt” file in this example would be:

@atom:SPCEflex/O 2

@atom:SPCEflex/H 1

The order of lines in this file does not matter.
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Using “-pdb” and “-a” together

If you are using the “-pdb” or “-xyz” flags, these must appear first. The
the “-a” (and “-b”) flags must appear at the end of the argument list (but
before the “.et” file). For example:

emoltemplate.sh -pdb file.pdb -a ’@atom:SPCEflex/O 2’ system.et

The “-b” flag

Note that when using the “-a” flag above, care will be taken to insure
that the assignment(s) are exclusive. None of the atom types (other than
@atom:SPCEflex/O) will be assigned “2”. (For this reason, using the “-a”
flag to change the atom type assignments can, in principle, alter the numbers
assigned other atom types, or variables.) This usually the desired behavior.
However suppose, for some reason, that you wanted to force a variable as-
signment, so that other variables in the same category are not effected. In
that case, you can use the “-b” flag:

emoltemplate.sh -b ’@atom:SPCEflex/O 2’ system.et

Keep in mind, that in this example, this could cause other atom-types (for
example “@atom:SPCEflex/H”) to be assigned to overlapping numbers.

The “ttree assignments.txt” file

Generally, after running emoltemplate.sh, a “ttree assignments.txt” file will
be created (or updated if it is already present) to reflect any changes you
made. (This file is usually located in the “output ttree/” directory. It can
also be located the current directory “./”.) You can always check this to
make sure that the atom types (or any other ttree variables) were assigned
correctly.

The “ttree assignments.txt” file has the same format as the “new assignments.txt”
file example above.

Note: In both files, an optional slash, “/”, may follow the “@” or “$”
characters, as in “@/atom:SPCEflex/O”. (This slash is optional and indi-
cates the environment in which the counter is defined. The “@atom” counter
is defined globally. The “$resid” counter example described in section B.2
is not.)

ettree.py and ttree.py also accept “-a” and “-b” flags

If for some reason, you are using “ettree.py” or “ttree.py” instead of “emoltem-
plate.sh”, then the “-a” and “-b” flags explained here also work with these
scripts. They are not specific to emoltemplate.sh.

B.2 Customizing the counting method using category

Variables in “.et” files are assigned to integers by default, starting with 1, and
incrementing by 1. This can be overridden using the “category” command.
For example, to create a new variable category named “distance” which
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starts at 0 and increments by 0.5, you would include this command in your
ET file:

category $distance(0.0, 0.5)

(This command can also be used with traditional counter categories like
$atom and bond).

B.3 Combining files together

This is useful if you are combining data files from two systems together. For
example if a previous system contains 317982 atoms, then the next time you
run emoltemplate, you would insert the following text at the beginning of
your ET file (system.et)

category $atom(317983, 1)

This will avoid overwriting the settings for these atoms in the previous
system. If you need help to combine a large number of systems together,
contact and we can work on an automated solution. I
would like to eventually see emoltemplate be used for large systems.)

B.4 Creating local independent counters

By default variables in a given category are always assigned to unique inte-
gers. This can be overridden using the “category” command. For example,
you might have a variable that keeps track of the position index of each
residue in each protein chain. The first residue in a protein (N-terminus)
is assigned “1”, the second residue, “2”, etc, regardless of the number of
protein chains in your system.

To do this, we can create a new variable category named “resid” which
is defined within the scope of each instance of the “Protein” molecule:

Residue {

write("Data Atoms") {

part $atom:ca pos 0.0 0.0 0.0 0.0 type @atom:C q 0.0 mass 13

part $atom:cb pos 0.0 1.53 0.0 0.0 type @atom:C q 0.0 mass 14

}

write("AuxiliaryFile") {

atom# $atom:ca belongs to residue# $resid:. of protein# $mol:...

atom# $atom:cb belongs to residue# $resid:. of protein# $mol:...

}

}

Protein {

category $resid(1,1)

residues = Residue[100]

create_var { $mol:. } # <- creates a $mol counter variable for this protein

# "$mol:..." above will refer to this counter

}
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proteins = Protein[10]

In this example, there are 10 proteins containing 100 residues each. The
“$resid” counters will be replaced with integers in the range 1 . . . 100, (not
1 . . . 1000, as you might expect). Because the “$resid” counter is local to
the protein it is defined within, “$resid” variables in other proteins do not
share the same counter, and can overlap.

B.5 Changing the variable counting order (“-order”)

Most variables are assigned automatically. By default static variables (@)
are assigned in the order they appear in the file (or files, if multiple ET files
are included). Subsequently, instance variables ($) are assigned in the order
they are created during instantiation. However you can customize the order
in which they are assigned.

Ordering

ET files are parsed by emoltemplate.sh/ettree.py in multiple stages. The
“write once()” and “write()” commands are carried out in the static and
instance phases respectively, as explained below.

The static phase

In the “static” phase, “write once()” statements are carried out in the order
they are read from the user’s input file(s) (regardless of whether or not they
appear in nested classes). Any “include” commands will effect this order.
After processing the class definitions, and carrying out the “write once()”
commands, ettree.py begins the instantiation phase.

The instantiation phase

During this phase, ettree.py makes copies of (instantiates) classes which
were requested by the user using the “new” command. During this stage,
ettree.py also appends data to files using the “write” command. (In this
manual, the “write()” and “new” are called instance commands.) The se-
quence of alternating “write()” and “new” commands in the order that they
appear in the user’s input file(s). “new” commands recursively invoke any
instance commands for each copy of the class they create.

Static variable ordering (@)

By default, static @ variables are assigned in the order that they appear in
the user’s input file (after any “include” commands have been carried out).
This is true regardless of whether they appear in “write()” or “write once()”
commands, and whether they appear in nested classes. If “-order-dfs” is se-
lected, then static @ variables are defined in the order they appear in the
tree, with variables defined in the outermost nested class, (the global class
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named “/”) define first. If this option is selected then static variables de-
fined in “write once()” commands are assigned to numbers first before any
variables in “write()” command are processed. (Position in the input file
is used as a secondary sort criteria.) On the other hand, the “-order-file”
command line option (described above) does not modify the numeric order-
ing of static variables (because they are ordered according to file position
by default).

Again, the counting of instance variables (prefixed by “$”) does not inter-
fere with static variable assignment. For example “@atom:x” and “$atom:x”
correspond to different variables and belong to different variable categories
(“@atom” and “$atom”) and they are assigned to numerical values indepen-
dently.

C Using ettree.py or ttree.py directly

(bypassing emoltemplate.sh)

“emoltemplate.sh” is only a simple script which invokes “ettree.py”, and
then combines the various output files generated by ettree.py into a single
ESPResSo TCL file, along with coordinate data. “ettree.py” then invokes
“ttree.py”. “ttree.py” lacks the ability to read or generate coordinates, but
is otherwise nearly identical to “ettree.py” and “emoltemplate.sh”.

If in the future emoltemplate.sh no longer works with some new, recently
added ESPResSo feature, you can bypass emoltemplate.sh and run ettree.py
or ttree.py directly. Everything emoltemplate.sh does can essentially be
done by hand with a unix shell and a text editor. This procedure is outlined
below.

C.1 First run ttree.py

The syntax for running “ttree.py” is identical to the syntax for running
emoltemplate.sh. The emoltemplate.sh syntax is explained above.

Unfortunately, ttree.py does not understand the -pdb or -xyz arguments
for processing coordinate data. If you run “ttree.py” directly, then you must
extract the coordinate data from these files yourself and insert it into your
ESPResSo input files manually. This is explained below.

Example: Go to the “waterSPCE+Na+Cl” directory (in the examples)
and run:

ttree.py system.et
This will prepare ESPResSo input files for a system of 32 water molecules.

(In this example, we are using the “SPCEflex” water model.)
Running the command above will probably create the following files:

“Data Atoms” (The “Atoms” section of a ESPResSo TCL file, w/o coordi-
nates) “Data Bonds” (The “Bonds” section of a ESPResSo TCL file) “Data
Angles” (The “Angles” section of a ESPResSo TCL file) “Data Masses” (The
“Masses” section of a ESPResSo TCL file) “In Init” (The “Initialization”
section of a ESPResSo input script.) “In Settings” (The “Settings” section
of a ESPResSo input script, which typically contains force-field parameters
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and constraints) “Data Boundary” (The “Periodic Boundary Conditions”
section of a ESPResSo data file.) “ttree assignments.txt” (Variable assign-
ments. See “customization” section.)

This data can be easily combined into a single ESPResSo TCL file later
on, using a text editor, or the unix “cat” and “paste” commands.

It may also create these files: “Data Angles By Type”, “Data Dihedrals
By Type”, “Data Impropers By Type”. These files tell emoltemplate how to
automatically generate bonded-interactions by atom and bond type. They
must be converted to lists of angles, dihedrals, and impropers, using the
“nbody by type.py” utility (as explained in appendix A).

C.2 Then create a ESPResSo TCL file

Create a new file (“system.tcl” in this example), and append the following
files to it.

echo "" >> system.data

echo "# -- Init --" >> system.data

echo "" >> system.data

cat "In Init" >> system.data

echo "" >> system.data

echo "# -- Bond force-field parameters --" >> system.data

echo "" >> system.data

cat "Data Bond Coeffs" >> system.data

echo "" >> system.data

echo "# -- Angle force-field parameters --" >> system.data

echo "" >> system.data

cat "Data Angle Coeffs" >> system.data

echo "" >> system.data

echo "# -- Dihedral force-field parameters --" >> system.data

echo "" >> system.data

cat "Data Dihedral Coeffs" >> system.data

echo "" >> system.data

echo "# -- Improprer force-field parameters --" >> system.data

echo "" >> system.data

cat "Data Improper Coeffs" >> system.data

echo "" >> system.data

echo "" >> system.data

echo "" >> system.data

echo "# -- Atoms --" >> system.data

echo "" >> system.data

cat "Data Atoms" >> system.data

echo "" >> system.data

echo "# -- Bonds --" >> system.data
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echo "" >> system.data

cat "Data Bonds" >> system.data

echo "" >> system.data

echo "# -- Angles --" >> system.data

echo "" >> system.data

cat "Data Angles" >> system.data

echo "" >> system.data

echo "# -- End of system definition --" >> system.data

echo "" >> system.data

Depending on your system, you may also have these files as well: “Data
Dihedrals” “Data Impropers” “Data Bond Coeffs” “Data Angle Coeffs”
“Data Dihedral Coeffs” “Data Improper Coeffs”. If so, then then append
them to the end of your data file as well.

C.3 Extract coordinates

The following commands are useful for extracting coordinates from PDB or
XYZ files and converting them to ESPResSo input script commands: To
extract coordinates from a .PDB file (“file.pdb”), use:

awk ’/^ATOM |^HETATM/{print substr($0,31,8) \

" "substr($0,39,8) \

" "substr($0,47,8)}’ \

< file.pdb \

> tmp_atom_coords.dat

(Note: There should be two spaces following the word “ATOM” above.)
To extract coordinates from an XYZ file (“file.xyz”), use:

awk ’function isnum(x){return(x==x+0)} \

BEGIN{targetframe=1;framecount=0} \

{if (isnum($0)) {framecount++} else \

{if (framecount==targetframe) { \

if (NF>0) { \

if ((NF==3) && isnum($1)) { \

print $1" "$2" "$3} \

else if ((NF==4) && isnum($2)) { \

print $2" "$3" "$4} }}}}’ \

< file.xyz \

> tmp_atom_coords.dat

C.4 Convert the coordinate file to ESPResSo input script
format

awk ’{if (NF>=3) { \

natom++; print "set atom "natom" x "$1" y "$2" z "$3" "}}’ \

< tmp_atom_coords.dat \

>> system.in.coords
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Finally import ”system.in.coords” in your lammps input script using:

echo "include \"system.in.coords\"" >> system.in

D Using the nbody by type.py utility

(bypassing emoltemplate.sh)

emoltemplate.sh uses the “nbody by type.py” utility to generate many-body
interactions between bonded atoms by atom type. In the event that emoltem-
plate.sh crashes or is not up-to-date with ESPResSo, you can assign inter-
actions by type by manually invoking nbody by type.py yourself.

As an example, the following command will generate a file “Angles”
containing lines of text which should eventually be pasted into the “Angles”
section of a ESPResSo data file:

nbody_by_type Angles \

-atoms "Data Atoms" \

-bonds "Data Bonds" \

-nbodybytype "Data Angles By Type" \

> "Data Angles"

For dihedral or improper interactions, repeat the command above, and
replace “Angles” with “Dihedrals”, or “Impropers” everywhere.

Note: The above instructions work assuming that you do not use any
wildcard characters (“*” or “?”) or regular expressions in your “Angles By
Type” section. If you use wildcards or regular expressions, then you must
run the program this way:

nbody_by_type Angles \

-atoms "Data Atoms.template" \

-bonds "Data Bonds.template" \

-nbodybytype "Data Angles By Type.template" \

> "Data Angles.template"

Afterwards, you must then replace each variable in the “Angles.template”
file with the appropriate integer before you copy the contents into the ESPResSo
data file. (The ttree render.py program may be useful for this. Open the
emoltemplate.sh file with a text editor to see how this was done.)

Note that “Data Atoms”, and “Data Bonds” refer to files which are
normally created by “ttree.py” or “ettree.py” which contain atom and bond
data in ESPResSo data file format, respectively. Similarly “Data Angles
By Type” refers to a file containing instructions for how to automatically
generate angles by atom type. (Again, this would typically be generated by
running “ttree.py” or “ettree.py” on an ET file containing a block of text
wrapped inside a “write once(’Data Angles By Type’)” command.)

Note: if you already have existing “Data Angles”, you can add them to
the list of angle interactions created by nbody by type.py.
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nbody_by_type Angles \

-atoms "Data Atoms" \

-bonds "Data Bonds" \

-nbodyfile "Data Angles" \

-nbodybytype "Data Angles By Type" \

> extra_Angles.tmp

cat extra_Angles.tmp "Data Angles" > new_Angles

mv -f new_Angles "Data Angles"

rm -f extra_Angles.tmp

D.1 Usage

For reference, the complete man page for the “nbody by type.py” command
is included below.

nbody_by_type.py reads a ESPResSo data file (or an excerpt of a ESPResSo)

data file containing bonded many-body interactions by atom type

(and bond type), and generates a list of additional interactions

in ESPResSo format consistent with those type (to the standard out).

Typical Usage:

nbody_by_type.py X < old.data > new.data

--or--

nbody_by_type.py X \

-atoms atoms.data \

-bonds bonds.data \

-nbody X.data \

-nbodybytype X_by_type.data

> new_X.data

In both cases "X" denotes the interaction type, which

is either "Angles", "Dihedrals", or "Impropers".

(Support for other interaction types can be added by the user. See below.)

-------- Example 1 -------

nbody_by_type.py X < old.data > new.data

In this example, nbody_by_type.py reads a ESPResSo data file

"orig.data", and extracts the relevant section ("Angles",

"Dihedrals", or "Impropers"). It also looks a section named "X By Type",

(eg. "Angles By type", "Impropers By type", "Impropers By type")

which contains a list of criteria for automatically defining additional

interactions of that type. For example, this file might contain:

Angle By Type
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7 1 2 1 * *

8 2 2 * * *

9 3 4 3 * *

The first column is an interaction type ID.

The next 3 columns are atom type identifiers.

The final 2 columns are bond type identifiers.

The * is a wildcard symbol indicating there is no preference for bond types

in this example. (Optionally, regular expressions can also be used to

define a type match, by enclosing the atom or bond type in / slashes.)

The first line tells us to that there should be a 3-body "Angle"

interaction of type "7" whenever an atom of type 1 is bonded to an atom

of type "2", which is bonded to another atom of type "1" again.

The second line tells us that an angle is defined whenever three atoms

are bonded together and the first two are of type "2".

(Redundant angle interactions are filtered.)

New interactions are created for every group of bonded

atoms which match these criteria if they are bonded together

in the relevant way for that interaction type (as determined by

nbody_X.py), and printed to the standard output. For example,

suppose you are automatically generating 3-body "Angle" interactions using:

nbody_by_type Angles < old.data > new.data

The file "new.data" will be identical to "old.data", however the

"Angles By Type" section will be deleted, and the following lines of

text will be added to the "Angles" section:

394 7 5983 5894 5895

395 7 5984 5895 5896

396 7 5985 5896 5897

: : : : :

847 9 14827 14848 14849

The numbers in the first column are counters which assign a ID to

every interaction of that type, and start where the original "Angles"

data left off (New angle ID numbers do not overlap with old ID numbers).

The text in the second column ("7", "9", ...) matches the text from the

first column of the "Angle By Type" section of the input file.

-------- Example 2 -------

nbody_by_type.py X \

-atoms atoms.data \

-bonds bonds.data \
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-nbody X.data \

-nbodybytype X_by_type.data \

> new_X.data

In particular, for Angle interactions:

nbody_by_type.py Angles \

-atoms atoms.data \

-bonds bonds.data \

-nbody angles.data \

-nbodybytype angles_by_type.data \

> new_Angles.data

When run this way, nbody_by_type.py behaves exactly the same way

as in Example 1, however only the lines of text corresponding to

the new generated interactions are printed, (not the entire data file).

Also note, that when run this way, nbody_by_type.py does not read the

ESPResSo data from the standard input. Instead, it reads each section of

the data file from a different file indicated by the arguments following

the "-atoms", "-bonds", "-nbody", and "-nbodybytype" flags.

"Angles" is a 3-body interaction style. So when run this way,

nbody_by_type.py will create a 5 (=3+2) column file (new_Angles.data).

Note: the atom, bond and other IDs/types in need not be integers.

Note: This program must be distributed with several python modules, including:

nbody_Angles.py, nbody_Dihedrals.py, and nbody_Impropers.py. These

contain bond definitions for angular, dihedral, and improper interactions.

D.2 Custom bond topologies

Currently nbody by type.py can detect and generate “Angle” and “Dihe-
dral” interactions between 3 and 4 consecutively bonded atoms. It can also
generate “Improper” interactions between 4 atoms bonded with a T-shaped
topology (one central atom with 3 branches). The nbody by type.py script
imports external modules named “nbody Angles.py”, “nbody Dihedrals.py”,
and “nbody Impropers.py” to help it detect angles, dihedrals, and improper
interactions automatically. In case any new interaction types are ever added
to ESPResSo, it is easy to define new bonded interaction types by supply-
ing a new “nbody X.py” python modules. These python files are usually
only a few lines long. Copy one of the existing modules “nbody Angles.py”,
“nbody Dihedrals.py”, or “nbody Impropers.py”) and modify it to the sub-
graph inside to match the bonded network that you want to search for.

E Variable syntax details

Counter variables have names like:
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$cpath/catname :lpath
or
@cpath/catname :lpath
(Note: All of the variable examples in this appendix can refer to either

static @ variables or instance $ variables. Both variable types obey the same
syntax rules. For brevity, only the instance $ variables are shown.)

All counter variables have 3 parts:

cpath, the category scope object (which is usually omitted)

catname, the category name

lpath, the “leaf path”. This includes the variable’s name and (op-
tionally) the location of that variable in the object tree relative to the
object in which the variable is referenced (the current-context object)

Typically the cpath is omitted, in which case it means that the category
has global scope. (This is true for all of the standard counter variable types:
“@atom”, “$atom”, “$mol”, “@bond”, “$bondid”, “@angle”, “@dihedral”,
and “@improper”.) However the cpath can be specified explicitly, as in
this example: “$/atom:” (“/” denotes explicitly that the counter has global
scope). Another example with an explicit cpath is the custom local counter
variable named “$/proteins[5]/resid:.” (See section B.4.) In this example,
the cpath is “$/proteins[5]”, the catname is “resid”, and the lpath is “.”.
(In section B.4, we never explicitly specified the cpath. This is a source
of confusion. When cpath is omitted, then the program searches up the
tree for an ancestor node containing a category with a matching catname.
Consequently the cpath rarely ever needs to be stated explicitly. See section
E.2 for more details.)

E.1 General variable syntax

The ellipsis (“...”) commonly appears in counter variables (or it is implied).
The most complex and general variable syntax is:

$cpath/.../catname :lpath
This means: find the closest ancestor of the cpath object containing

a category named “catname”. This ancestor determines the category’s
scope. Counter variables in this category are local to ancestors of that
object. In this usage example, lpath identifies the location of the variable’s
corresponding “leaf” object relative to the category scope object (cpath).
On the other hand, if the the category’s scope (cpath) was not explicitly
stated by the user (which is typical), then the lpath identifies the location
of the leaf object relative to the object in which the variable was referenced
(the current-context “.”).
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E.2 Variable shorthand equivalents

$catname:lpath is equivalent to “$.../catname:lpath”

This means: find the closest direct ancestor of the current object containing a
category whose name matches catname. If not found, create a new category
(at the global level). This is the syntax used most frequently in ET files.

If the colon is omitted, as in $lpath/catname, then it is equivalent to:
$catname :lpath. Again, in these cases, lpath is a path which is relative to
the object in which the variable was referenced.

If $lpath is omitted, then this is equivalent to $catname :. In other
words, the the leaf node is the current node, “.”. (This syntax is often used to
count keep track of molecule ID numbers. You can use the counter variable
“$mol” to keep track of the current molecule id number, because it counts the
molecular objects in which this variable was defined. In this case the name
of the category is “mol”. As in most examples, the category object, cpath,
is not specified. This means the category object is automatically global. A
global category object means that every molecule object is given a unique ID
number which is unique for the entire system, not just unique within some
local molecule. As a counter-example, consider amino acid residue counters.
Each amino acid in a protein can be assigned a residue ID number which
identifies it within a single protein chain. However because their category
was defined locally at the protein level, these residue ID numbers are not
global, and are not uniquely defined if there are multiple protein chains
present.)

$cpath/catname:lpath/...

(SHORTHAND equivalent)
Find the category name and object corresponding to “$cpath/catname :”

(see above) If $cpath/ is blank, then search for an ancestor with a category
whose name matches catname, as described above. To find the variable’s
corresponding “leaf object”, start from the CURRENT object (not the cat-
egory object). If lpath is not empty, follow lpath to a new position in the
tree. Otherwise, start at the current object. (An empty lpath corresponds
to the current object.) From this position in the object tree search for a
direct ancestor which happens to also be “leaf object” for some other vari-
able which belongs to the desired category. If no such variable is found,
then ttree creates a new variable whose leaf object is the object at the lpath
position, and put it in the desired category.

$lpath/.../catname is equivalent to $catname:lpath/...

(SHORTHAND equivalent)
If lpath is omitted, then start from the current node. (In the molecular

examples, “$.../mol” is a variable whose category name is “mol”. The “leaf
object” for the variable is either the current object in which this variable
was defined, OR a direct ancestor of this object which has been assigned to
a variable belonging to the category named “mol”. In this way large objects
(large molecules) can be comprised of smaller objects, without corrupting the
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“mol” counter which keeps track of which molecule we belong to. In other
words, “$.../mol” unambiguously refers to the ID# of the large molecule to
which this sub-molecule belongs (regardless of however many layers up that
may be).)

$cpath/catname:lpath

Variables in the output ttree/ttree assignments.txt file use the this syntax.
If the user explicitly specifies the path leading up to the cat node, and

avoids using “...”, then lpath is interpreted relative to the category object,
not the current object (however cpath is interpreted relative to the current
object). This happens to be the format used in the “ttree assignments.txt”
file (although you can use it anywhere else in an “.ET” file). In “ttree assignments.txt”
file, cpath is defined relative to the global object. The variables in that file
always begin with “$/” or “@/”. The slash at the beginning takes us to the
global environment object (to which all the other objects belong). (Since
the variables in the “ttree assignments.txt” always begin with “$/” or “@/”,
this distinction is usually not important because the category object for most
variables usually is the “global” root object.)
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